

MegaStrategy
25/01/25

Trust
Security

Smart Contract Audit

Trust Security MegaStrategy

Executive summary

Findings

Severity Total Fixed Acknowledged

High 2 - -

Medium 2 - -

Low 1 - -

Centralization score

Centralized Decentralized

Signature

Category Treasury
Protocol

Audited file count 6

Lines of Code 666

Auditor Trust

Time period 20/01/25-
25/01/25

2, High

2,
Medium

1, Low

FINDINGS

Trust Security MegaStrategy

EXECUTIVE SUMMARY 1

DOCUMENT PROPERTIES 3

Versioning 3

Contact 3

INTRODUCTION 4

Scope 4

Repository details 4

About Trust Security 4

About the Auditors 4

Disclaimer 4

Methodology 5

QUALITATIVE ANALYSIS 6

FINDINGS 7

High severity findings 7
TRST-H-1 All TOKENs backing non-exercised options will be stuck in the treasury 7
TRST-H-2 The integration with Morpho Blue Oracle exposes price with wrong decimals 7

Medium severity findings 9
TRST-M-1 The Debt token does not support various token price ratios 9
TRST-M-2 Conversion to TOKEN could fail in the Banker due to rounding errors 9

Low severity findings 11
TRST-L-1 Upgrades of TRSRY and TOKEN modules lead to reverting behavior 11

Additional recommendations 13
TRST-R-1 Improve state changes in Banker 13
TRST-R-2 Improve Documentation 13
TRST-R-3 Defensive precautions in the Axis Auction integration 13
TRST-R-4 Check sanity in state changes 13
TRST-R-5 Introduce permissioned burning functionality in TOKEN 13

Centralization risks 14
TRST-CR-1 The Default Framework is highly permissioned 14

Systemic risks 15
TRST-SR-1 External integrations are trusted 15
TRST-SR-2 Bad Debt risks 15

Trust Security MegaStrategy

Document properties

Versioning

Version Date Description

0.1 25/01/25 Client report

Contact

Trust

trust@trust-security.xyz

Trust Security MegaStrategy

Introduction

Trust Security has conducted an audit at the customer's request. The audit is focused on

uncovering security issues and additional bugs contained in the code defined in scope. Some

additional recommendations have also been given when appropriate.

Scope

• Banker.sol

• Issuer.sol

• MegaTokenOracle.sol

• TOKEN.v1.sol

• MegaToken.sol

• ConvertibleDebtToken.sol

Repository details

• Repository URL: https://github.com/MegaStrategy/megastrategy

• Commit hash: a76d72764b835d8ebc38edb0cdaa43f01b6e09ea

About Trust Security

Trust Security has been established by top-end blockchain security researcher Trust, in order

to provide high quality auditing services. Since its inception it has safeguarded over 30 clients

through private services and over 30 additional projects through bug bounty submissions.

About the Auditors

Trust has established a dominating presence in the smart contract security ecosystem since

2022. He is a resident on the Immunefi, Sherlock and C4 leaderboards and is now focused in

auditing and managing audit teams under Trust Security. When taking time off auditing & bug

hunting, he enjoys assessing bounty contests in C4 as a Supreme Court judge.

Disclaimer

Trust Security MegaStrategy

Smart contracts are an experimental technology with many known and unknown risks. Trust

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited

code or any part of the deployment phase.

Furthermore, it is known to all parties that changes to the audited code, including fixes of

issues highlighted in this report, may introduce new issues and require further auditing.

Methodology

In general, the primary methodology used is manual auditing. The entire in-scope code has

been deeply looked at and considered from different adversarial perspectives. Any additional

dependencies on external code have also been reviewed.

Trust Security MegaStrategy

Qualitative analysis

Metric Rating Comments
Code complexity

Good

Project kept code as
simple as possible,
reducing attack risks

Documentation

Excellent

Project is mostly very well

documented.

Best practices

Excellent

Project consistently
adheres to industry
standards.

Centralization risks

Moderate Privileged users have
significant impact on the
safety and functionality of
the platform.

Trust Security MegaStrategy

Findings

High severity findings

TRST-H-1 All TOKENs backing non-exercised options will be stuck in the treasury

• Category: Integration issues

• Source: Issuer.sol

• Status: Open

Description

The issuer is tasked with creating and issuing OTokens, which can be traded in until the option

expiry date. After that date, any TOKEN that has not been traded remains in the Teller

contract, which expects the receiver of the OToken to call reclaim() to take in the non-traded

units. However, the Issuer marks the TRSRY module as the receiver, which is a smart contract

without supporting logic to call reclaim. As a result, the tokens would be stuck.

Recommended mitigation

Add the reclaim() functionality to the treasury, or use a different token as the receiver which

would handle claiming.

Team response

TBD

TRST-H-2 The integration with Morpho Blue Oracle exposes price with wrong decimals

• Category: Decimals issues

• Source: MegaTokenOracle.sol

• Status: Open

Description

Morpho supports arbitrary plug-in oracles. It defines the following specification for the price()

function:

The function has been coded in the Oracle contract below:

function price() external view returns (uint256) {

 // Scale: PRICE decimals

 // We know that PRICE decimals == TOKEN decimals == 18

 uint256 collateralPriceInLoanToken = PRICE.getPriceIn(TOKEN, loanToken);

 // Adjust to the expected scale

Trust Security MegaStrategy

 return 1e36 * collateralPriceInLoanToken / _loanTokenScale;

}

The PRICE.getPriceIn() function returns the price of a decimals-aware unit of TOKEN quoted

in decimals-aware unit of loanToken, scaled by 1e18. It can be assumed that the collateral

token, which is TOKEN, has 18 decimals. Therefore, the Morpho calculation is 36 +

loanDecimals – 18 = 18 + loanDecimals decimals. Since the result is already in 18 decimals, it

just needs to be scaled by loanDecimals. The current code has a completely different

calculation, likely due to confusion from the required units.

Recommended mitigation

Use the scaling outlined above.

Team response

TBD

Trust Security MegaStrategy

Medium severity findings

TRST-M-1 The Debt token does not support various token price ratios

• Category: Precision loss issues

• Source: ConvertibleDebtToken.sol

• Status: Open

Description

Every ConvertibleDebtToken has a conversionPrice, defined as the amount of underlying per

convertedTo token (decimals-aware), in underlying decimals. Suppose that underlying is a

highly valued token, worth $101,000 per unit, with 6 decimals. Also, the convertedTo token

(TOKEN) is worth $0.1 per unit, with 18 decimals. Therefore, the admin would like to input a

convertedTo value of $0.1/$101,000 * 1e6 < 1. This means such a ratio cannot be expressed,

as it would revert in the auction or any contract that uses the conversionPrice.

Recommended mitigation

The conversionPrice value should be scaled by 1e18 to support a wide variety of token value

combinations.

Team response

TBD

TRST-M-2 Conversion to TOKEN could fail in the Banker due to rounding errors

• Category: Rounding issues

• Source: Banker.sol

• Status: Open

Description

When issuing debt tokens, the Banker increases its mint approval amount so that it could later

mint tokens during conversion. It is done in the lines below:

uint256 mintAmount = _getConvertedAmount(amount, conversionPrice);

TOKEN.increaseMintApproval(address(this), mintAmount);

function _getConvertedAmount(

 uint256 amount,

 uint256 conversionPrice

) internal view returns (uint256) {

 return (amount * 10 ** _tokenDecimals) / conversionPrice;

}

Note that the amount is rounded down. However, issue() can be called several times. The

remainder of each call is always ignored, but the corresponding, non-dividing debt token

amount is still minted. If those debt tokens remainders are added together, they would

require additional units of TOKEN to be approved. Theoretically, this means convert() could

fail as there is not enough approval from the individual issue() calls.

Trust Security MegaStrategy

Recommended mitigation

Round up the mint approval to be added, or perform the approvals just before minting the

tokens instead of during an issue().

Team response

TBD

Trust Security MegaStrategy

Low severity findings

TRST-L-1 Upgrades of TRSRY and TOKEN modules lead to reverting behavior

• Category: Upgrade issues

• Source: Banker.sol, Issuer.sol

• Status: Open

Description

MegaStrategy leverages the Default Framework, which operates by installing and removing

modules from the Kernel. At any point, the latest Module dependencies can be fetched

through configureDependencies(), for example:

function configureDependencies() external override returns (Keycode[] memory

dependencies) {

 dependencies = new Keycode[](3);

 dependencies[0] = toKeycode("TRSRY");

 dependencies[1] = toKeycode("TOKEN");

 dependencies[2] = toKeycode("ROLES");

 TRSRY = TRSRYv1(getModuleAddress(dependencies[0]));

 TOKEN = TOKENv1(getModuleAddress(dependencies[1]));

 ROLES = ROLESv1(getModuleAddress(dependencies[2]));

 _tokenDecimals = TOKEN.decimals();

}

There are scenarios where modules are assumed to be the same at different points in the

lifecycle of a contract, but due to a module upgrade, they refer to another contract. In the

Banker, the TRSRY and TOKEN update their approval during issue():

TRSRY.increaseWithdrawApproval(address(this), underlying, amount);

// Increase this contract's mint approval for the amount divided by the

conversion rate

// This is to ensure that the debt token can be converted

uint256 mintAmount = _getConvertedAmount(amount, conversionPrice);

TOKEN.increaseMintApproval(address(this), mintAmount);

Then those approvals are required during convert() or redeem():

TRSRY.withdrawReserves(msg.sender, underlying, amount_);

// Calculate the amount of tokens that could have been minted against the

debt tokens

uint256 mintAmount = _getConvertedAmount(amount_, conversionPrice);

// Decrease the mint approval for the mint amount

// We do this since the debt token has been burned to avoid an extra

dangling mint allowance

TOKEN.decreaseMintApproval(address(this), mintAmount);

If one of these modules is upgraded, the functions may revert. A similar situation occurs in the

Issuer. In createO(), TOKEN is registered as payout token. In issueO(), it will try to transfer the

current TOKEN into the Teller:

Trust Security MegaStrategy

// Approve the teller to pull the newly minted TOKENs

ERC20(address(TOKEN)).safeApprove(address(teller), amount_);

// Mint the oToken from the teller

teller.create(oToken(token_), amount_);

This would cause a mismatch, and the issue() would revert.

Recommended mitigation

Consider refactoring so that either a module upgrade does not cause any issues, or if a module

upgrade should not be supported, freeze the current version into the contract and revert on

any module changes.

Team response

TBD

Trust Security MegaStrategy

Additional recommendations

TRST-R-1 Improve state changes in Banker

In initialize(), the Banker admin can change important configuration values and set the state

to active. The function should only be called when the current state is inactive, but it is never

validated.

TRST-R-2 Improve Documentation

The onSettle() function of Banker is incorrectly labelled as not implemented.

TRST-R-3 Defensive precautions in the Axis Auction integration

The Banker, which integrates with Axis Finance, is defined as its own Callback. Several

improvements can be made:

- In the implemented hooks, ensure that the seller of the lot is address(this), as done

in onCreate(). It should never be otherwise.

- The onPurchase() and onBid() hooks should never be called, consider reverting in

them to indicate they are not supported.

TRST-R-4 Check sanity in state changes

The setConversionPrice() function of ConvertibleDebtToken checks that the previous price is

zero, since it should only be set once. However it should also be checked that the new value

is not zero, otherwise the function executes successfully and emits and event, despite no

changes taking place. Likewise, consider adding a check when activating and disactivating the

Banker and Issuer modules, that the current state is the opposite of the new state.

TRST-R-5 Introduce permissioned burning functionality in TOKEN

Most modules in the Default Framework are designed so that it is easy to remove and install

another one, i.e. that no high-complexity state is maintained in them. The MegaToken,

however, maintains state on the balance, allowance, and voting checkpoints, of each user.

This makes it difficult in the event of an emergency, to replace the token with a new one.

Consider the possible remediations and alternatives. One way to de-risk the MegaToken is to

allow a permissioned user to burn from other users (similar to minting). This way, if tokens

are stuck, like in TRST-H-1 for example, they can be safely burnt without a complex redeploy.

Trust Security MegaStrategy

Centralization risks

TRST-CR-1 The Default Framework is highly permissioned

There are various high-risk privileges in the different MegaStrategy modules. Those affect

funds locked in the treasury as well as approvals to the modules. The owning Multisig and any

delegated privileged address should be considered trusted.

Trust Security MegaStrategy

Systemic risks

TRST-SR-1 External integrations are trusted

The contracts make use of several external integrations:

- LinearVesting contracts hold MegaToken options.

- Teller implements option minting and exercise logic.

- Axis Finance contracts implement the auction of debt tokens.

It should be clear that any issues with the contracts could compromise the security of

MegaStrategy.

TRST-SR-2 Bad Debt risks

MegaStrategy issues debt tokens which are redeemable or convertible to Mega tokens.

Holders of debt tokens should be aware of the possibility of default on the debt, as underlying

is not contractually held in place in the treasury.

		2025-01-25T15:38:33+0200
	Trust

